The Conics of Ludwig Kiepert:

نویسنده

  • R. H. EDDY
چکیده

If a visitor from Mars desired to leam the geometry of the triangle but could stay in the earth' s relatively dense atmosphere only long enough for a single lesson, earthling mathematicians would, no doubt, be hard-pressed to meet this request. In this paper, we believe that we have an optimum solution to the problem. The Kiepert conics, though seemingly unknown today, constitute a significant part of the geometry of the triangle and to study them one has to deal with many fundamental concepts related to this geometry such as the Euler line, Brocard axis, circumcircle, Brocard angle, and the Lemoine line in addition to weIl-known points including the centroid, circumcentre, orthocentre, and the isogonic centres. In the process, one comes into contact with not so weIl known, but no less important concepts, such as the Steiner point, the isodynamie points and the Spieker circle. In this paper, we show how the Kiepert' s conics are derived using both analytic and projective arguments and discuss their main properties, which we have drawn together from several sourees. We have applied some modem technology, in this case computer graphics, to produce aseries of pictures that should serve to increase the reader' s appreciation for this interesting pair of conics. In addition, we have derived some results that we were unable to locate in the available literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Conics

In this paper, we introduce discrete conics, polygonal analogues of conics. We show that discrete conics satisfy a number of nice properties analogous to those of conics, and arise naturally from several constructions, including the discrete negative pedal construction and an action of a group acting on a focus-sharing pencil of conics.

متن کامل

Plane Conics in Algebraic Geometry

We first examine points and lines within projective spaces. Then we classify affine conics based on the classification of projective conics. Based on the parametrization of conics, we also prove two easy cases of Bézout’s Theorem. In the end we turn to the discussion of the space of conics and the notion of pencils of conics.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008